The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is

  • A

    $\left( {^ \sim p \wedge q} \right) \wedge p$

  • B

    $\left( {^ \sim p \wedge q} \right) \vee p$

  • C

    $\left( {^ \sim p \wedge q} \right){ \vee \,^ \sim }p$

  • D

    $\left( {^ \sim p{ \wedge ^ \sim }q} \right){ \wedge \,^ \sim }q$

Similar Questions

The statement $( p \wedge q ) \Rightarrow( p \wedge r )$ is equivalent to.

  • [JEE MAIN 2022]

Let $r \in\{p, q, \sim p, \sim q\}$ be such that the logical statement $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r \quad$ is a tautology. Then ' $r$ ' is equal to

  • [JEE MAIN 2022]

Contrapositive of the statement:

'If a function $f$ is differentiable at $a$, then it is also continuous at $a$', is

  • [JEE MAIN 2020]

Which of the following is a contradiction

If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of  $p$ and  $q$ are respectively .

  • [JEE MAIN 2018]